## Correlation: 2016 Alabama Course of Study, Mathematics standards and NAEP Objectives

When teaching Alabama Course of Study content, NAEP objectives and items are useful for identifying a level of rigor which matches proficient student performance nationwide. The NAEP objectives identify content that could be included in lessons building toward master of the correlating standards from the 2016 Alabama Course of Study: Mathematics.

| Grade | Grade 8 Alabama Course of Study <br> Standard | NAEP Objective(s) Grade 4 | NAEP Objective(s) Grade 8 |
| :--- | :--- | :--- | :--- |
| 8 | 1. [8.NS.1] Know that numbers that are not <br> rational are called irrational. Understand <br> informally that every number has a <br> decimal expansion; for rational numbers <br> show that the decimal expansion repeats <br> eventually, and convert a decimal <br> expansion which repeats eventually into a <br> rational number. | 8NPO1 Write or rename rational <br> numbers. <br> 8NPO1e Recognize, translate, or apply <br> multiple representations of rational <br> numbers (fractions, decimals, and <br> percents) in meaningful contexts. <br> 8 <br> 2. [8.NS.2] Use rational approximations of <br> irrational numbers to compare the size of <br> irrational numbers, locate them <br> approximately on a number line diagram, <br> and estimate the value of expressions (e.g., <br> $\pi^{2}$. Example: By truncating the decimal <br> expansion of $\sqrt{2}$, show that 2 is between |  |
| 1 and 2, then between 1.4 and 1.5, and |  |  |  |
| explain how to continue on to get better |  |  |  |
| approximations. |  |  |  |$\quad$| 3. [8.EE.1] Know and apply the properties |
| :--- |
| of integer exponents to generate equivalent |
| numerical expressions. - Example: $3^{2} \times 3^{-5}$ |
| $=3^{-3}=1 / 3^{3}=1 / 27$. |


| 8 | 4. [8.EE.2] Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where $p$ is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational. |  | 8NPO2a Establish or apply benchmarks for rational numbers and common irrational numbers (e.g., $\pi$ ) in contexts. 8NPO2d Estimate square or cube roots of numbers less than 1,000 between two whole numbers. <br> 8A3c Perform basic operations, using appropriate tools, on linear algebraic expressions (including grouping and order of multiple operations involving basic operations, exponents, roots, simplifying, and expanding). |
| :---: | :---: | :---: | :---: |
| 8 | 5. [8.EE.3] Use numbers expressed in the form of a single digit times a wholenumber power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. Example: Estimate the population of the United States as 3 times $10^{8}$ and the population of the world as 7 times $10^{9}$, and determine that the world population is more than 20 times larger. |  | 8NPO1f Express or interpret numbers using scientific notation from real-life contexts. <br> 8A3c Perform basic operations, using appropriate tools, on linear algebraic expressions (including grouping and order of multiple operations involving basic operations, exponents, roots, simplifying, and expanding). |
| 8 | 6. [8.EE.4] Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. |  | 8NPO1f Express or interpret numbers using scientific notation from real-life contexts. <br> 8NPO3a Perform computations with rational numbers. <br> 8A3c Perform basic operations, using appropriate tools, on linear algebraic expressions (including grouping and order of multiple operations involving basic operations, exponents, roots, simplifying, and expanding). |


| 8 | 7. [8.EE.5] Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. - Example: Compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed. |  | 8NPO4c Use proportional reasoning to model and solve problems (including rates and scaling). <br> 8A1f Interpret the meaning of slope or intercepts in linear functions. <br> 8A2f Identify or represent functional relationships in meaningful contexts, including proportional, linear, and common nonlinear (e.g., compound interest, bacterial growth) in tables, graphs, words, or symbols. <br> 8A4d Interpret relationships between symbolic linear expressions and graphs of lines by identifying and computing slope and intercepts (e.g., know in $y=a x+b$, that $a$ is the rate of change and $b$ is the vertical intercept of the graph). 8A5a Make, validate, and justify conclusions and generalizations about linear relationships. |
| :---: | :---: | :---: | :---: |
| 8 | 8. [8.EE.6] Use similar triangles to explain why the slope $m$ is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y$ $=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at $b$. |  | 8A4d Interpret relationships between symbolic linear expressions and graphs of lines by identifying and computing slope and intercepts (e.g., know in $y=a x+b$, that a is the rate of change and b is the vertical intercept of the graph). 8A5a Make, validate, and justify conclusions and generalizations about linear relationships. |


| 8 | 9. [8.EE.7] Solve linear equations in one <br> variable. <br> a. Give examples of linear equations in one <br> variable with one solution, infinitely many <br> solutions, or no solutions. Show which of <br> these possibilities is the case by <br> successively transforming the given <br> equation into simpler forms until an <br> equivalent equation of the form $x=a, a=a$, <br> or $a=b$ results (where $a$ and $b$ are different <br> numbers). <br> b. Solve linear equations with rational <br> number coefficients, including equations <br> whose solutions require expanding <br> expressions, using the distributive property <br> and collecting like terms. | 8A4a Solve linear equations or <br> inequalities (e.g., ax $+\mathrm{b}=\mathrm{c}$ or $\mathrm{ax}+\mathrm{b}=\mathrm{cx}$ <br> +d or $\mathrm{ax}+\mathrm{b}>\mathrm{c})$. |
| :--- | :--- | :--- |
| 8 | 10. [8.EE.8] Analyze and solve pairs of <br> simultaneous linear equations. <br> a. Understand that solutions to a system of <br> two linear equations in two variables <br> correspond to points of intersection of their <br> graphs because points of intersection <br> satisfy both equations simultaneously. <br> b. Solve systems of two linear equations in <br> two variables algebraically, and estimate <br> solutions by graphing the equations. Solve <br> simple cases by inspection. Example: $3 x+$ <br> $2 y=5$ and $3 x+2 y=6$ have no solution <br> because $3 x+2 y$ cannot simultaneously be <br> 5 and 6. <br> c. Solve real-world and mathematical <br> problems leading to two linear equations in <br> two variables. Example: Given coordinates <br> for two pairs of points, determine whether <br> the line through the first pair of points <br> intersects the line through the second pair. |  |


| 8 | 11. [8.F.1] Understand that a function is a <br> rule that assigns to each input exactly one <br> output. The graph of a function is the set of <br> ordered pairs consisting of an input and the <br> corresponding output. (Function notation is <br> not required in Grade 8.) |  |  |
| :--- | :--- | :--- | :--- |
| 8 | 12. [8.F.2] Compare properties of two <br> functions each represented in a different <br> way (algebraically, graphically, <br> numerically in tables, or by verbal <br> descriptions). - Example: Given a linear <br> function represented by a table of values <br> and a linear function represented by an <br> algebraic expression, determine which <br> function has the greater rate of change. | 4A2a Translate between the different <br> forms of representations (symbolic, <br> numerical, verbal, or pictorial) of whole- <br> number relationships (such as from a <br> written description to an equation or from <br> a function table to a written description). | 8A1e Identify functions as linear or <br> nonlinear or contrast distinguishing <br> properties of functions from tables, graphs, <br> or equations. <br> 8A2a Translate between different <br> representations of linear expressions using <br> symbols, graphs, tables, diagrams, or <br> written descriptions. |
| 8 | 13. [8.F.3] Interpret the equation $y=$ mx + <br> $b$ as defining a linear function whose graph <br> is a straight line; give examples of <br> functions that are not linear. Example: The <br> function A $=\mathrm{s}^{2}$ giving the area of a square <br> as a function of its side length is not linear <br> because its graph contains the points (1,1), <br> (2,4), and (3,9), which are not on a straight <br> line. | 8A1f Interpret the meaning of slope or <br> intercepts in linear functions. <br> 8A2b Analyze or interpret linear <br> relationships expressed in symbols, <br> graphs, tables, diagrams, or written <br> descriptions. |  |
| 8 | 14. [8.F.4] Construct a function to model a <br> linear relationship between two quantities. <br> Determine the rate of change and initial <br> value of the function from a description of <br> a relationship or from two ( $x, y$ values, <br> including reading these from a table or <br> from a graph. Interpret the rate of change <br> and initial value of a linear function in <br> terms of the situation it models and in <br> terms of its graph or a table of values. |  | 8A1c Analyze or create patterns, <br> sequences, or linear functions given a rule. |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline 8 & \begin{array}{l}\text { 15. [8.F.5] Describe qualitatively the } \\
\text { functional relationship between two } \\
\text { quantities by analyzing a graph (e.g., } \\
\text { where the function is increasing or } \\
\text { decreasing, linear or nonlinear). Sketch a } \\
\text { graph that exhibits the qualitative features } \\
\text { of a function that has been described } \\
\text { verbally. }\end{array} & & \begin{array}{l}\text { 8A2f Identify or represent functional } \\
\text { relationships in meaningful contexts, } \\
\text { including proportional, linear, and } \\
\text { common nonlinear (e.g., compound } \\
\text { interest, bacterial growth) in tables, } \\
\text { graphs, words, or symbols. }\end{array} \\
\hline 8 & \begin{array}{l}\text { 16. [8.G.1] Verify experimentally the } \\
\text { properties of rotations, reflections, and } \\
\text { translations: } \\
\text { a. Lines are taken to lines, and line } \\
\text { segments are taken to line segments of the } \\
\text { same length. } \\
\text { b. Angles are taken to angles of the same } \\
\text { measure. } \\
\text { c. Parallel lines are taken to parallel lines. }\end{array} & \begin{array}{l}\text { 4G4a Describe relative positions of points } \\
\text { and lines using the geometric ideas of } \\
\text { parallelism or perpendicularity. }\end{array} & \begin{array}{l}\text { 8G3c Represent problem situations with } \\
\text { simple geometric models to solve } \\
\text { mathematical or real-world problems. } \\
\text { 8G3g Describe or analyze properties and } \\
\text { relationships of parallel or intersecting } \\
\text { lines. }\end{array} \\
\hline 8 & \begin{array}{l}\text { 17. [8.G.2] Understand that a two- } \\
\text { dimensional figure is congruent to another } \\
\text { if the second can be obtained from the first } \\
\text { by a sequence of rotations, reflections, and } \\
\text { translations; given two congruent figures, } \\
\text { describe a sequence that exhibits the } \\
\text { congruence between them. }\end{array} & \begin{array}{l}\text { 4G2e Match or draw congruent figures in } \\
\text { a given collection. }\end{array} & \begin{array}{l}\text { 8G2e Justify relationships of congruence } \\
\text { and similarity, and apply these } \\
\text { relationships using scaling and } \\
\text { proportional reasoning. }\end{array}
$$ <br>
\mathbf{8 G 3 c} Represent problem situations with <br>
simple geometric models to solve <br>

mathematical or real-world problems.\end{array}\right\}\)| 8G3f Describe or analyze simple |
| :--- |
| properties of, or relationships between, |
| triangles, quadrilaterals, and other |
| polygonal plane figures. |


| 8 | 18. [8.G.3] Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. | 4G2c Identify the images resulting from flips (reflections), slides (translations), or turns (rotations). | 8G2c Recognize or informally describe the effect of a transformation on twodimensional geometric shapes (reflections across lines of symmetry, rotations, translations, magnifications, and contractions). <br> 8G3c Represent problem situations with simple geometric models to solve mathematical or real-world problems. 8G3f Describe or analyze simple properties of, or relationships between, triangles, quadrilaterals, and other polygonal plane figures. <br> 8G4d Represent geometric figures using rectangular coordinates on a plane. |
| :---: | :---: | :---: | :---: |
| 8 | 19. [8.G.4] Understand that a twodimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. | 4G2c Identify the images resulting from flips (reflections), slides (translations), or turns (rotations). | 8M3a Solve problems involving indirect measurement, such as finding the height of a building by comparing its shadow with the height and shadow of a known object. 8G2e Justify relationships of congruence and similarity, and apply these relationships using scaling and proportional reasoning. <br> 8G2f For similar figures, identify and use the relationships of conservation of angle and proportionality of side length and perimeter. <br> 8G3c Represent problem situations with simple geometric models to solve mathematical or real-world problems. 8G3f Describe or analyze simple properties of, or relationships between, triangles, quadrilaterals, and other polygonal plane figures. |


$\left.\left.\begin{array}{|l|l|l|}\hline 8 & \begin{array}{l}\text { 26. [8.SP.2] Know that straight lines are } \\ \text { widely used to model relationships } \\ \text { between two quantitative variables. For } \\ \text { scatter plots that suggest a linear } \\ \text { association, informally fit a straight line, } \\ \text { and informally assess the model fit by } \\ \text { judging the closeness of the data points to } \\ \text { the line. }\end{array} & \begin{array}{l}\text { 8DASP1b For a given set of data, } \\ \text { complete a graph and then solve a problem } \\ \text { using the data in the graph (histograms, } \\ \text { line graphs, scatterplots, circle graphs, and } \\ \text { bar graphs). } \\ \text { 8DASP2e Visually choose the line that } \\ \text { best fits given a scatterplot and informally } \\ \text { explain the meaning of the line. Use the } \\ \text { line to make predictions. }\end{array} \\ \hline 8 & \begin{array}{l}\text { 27. [8.SP.3] Use the equation of a linear } \\ \text { model to solve problems in the context of } \\ \text { bivariate measurement data, interpreting } \\ \text { the slope and intercept. - Example: In a } \\ \text { linear model for a biology experiment, } \\ \text { interpret a slope of 1.5 cm/hr as meaning } \\ \text { that an additional hour of sunlight each day } \\ \text { is associated with an additional 1.5 cm in } \\ \text { mature plant height. }\end{array} & \begin{array}{l}\text { 8DASPlb For a given set of data, } \\ \text { complete a graph and then solve a problem } \\ \text { using the data in the graph (histograms, } \\ \text { line graphs, scatterplots, circle graphs, and } \\ \text { bar graphs). }\end{array} \\ \hline 8 & \begin{array}{l}\text { 28. [8.SP.4] Understand that patterns of } \\ \text { association can also be seen in bivariate } \\ \text { categorical data by displaying frequencies } \\ \text { and relative frequencies in a two-way } \\ \text { table. Construct and interpret a two-way } \\ \text { table summarizing data on two categorical } \\ \text { variables collected from the same subjects. } \\ \text { Use relative frequencies calculated for } \\ \text { rows or columns to describe possible } \\ \text { association between the two variables. } \\ \text { Example: Collect data from students in } \\ \text { your class on whether or not they have a } \\ \text { curfew on school nights, and whether or } \\ \text { not they have assigned chores at home. Is } \\ \text { there evidence that those who have a } \\ \text { curfew also tend to have chores? }\end{array} & \end{array}\right\} \begin{array}{l}\text { 8A1a Recognize, describe, or extend } \\ \text { numerical and geometric patterns using } \\ \text { tables, graphs, words, or symbols. } \\ \text { 8A1b Generalize a pattern appearing in a } \\ \text { numerical sequence, table, or graph using } \\ \text { words or symbols. }\end{array}\right\}$

